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ABSTRACT 

The objective of this paper is to present a new class of odd 

graceful graphs. In particular, we show that the linear cyclic 

snakes (1, k) C4- snake and (2, k) C4- snake are odd graceful. 

We prove that the linear cyclic snakes (1, k) C6- snake and (2, 

k) C6- snake are odd graceful. We also prove that the linear 

cyclic snakes (1, k) C8- snake and (2, k) C8- snake are odd 

graceful. We generalize the above results "the linear cyclic 

snakes (m, k) C4- snake, (m, k) C6-snake and (m, k) C8-snake 

are odd graceful ". Finally, we introduce a new conjecture" 

All the linear cyclic snakes (m, k) Cn-snakes are odd graceful 

if n is even)".  
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1. INTRODUCTION 
The graphs considered here will be finite, undirected and 

simple. The symbols V(G) and E(G) will denote the vertex set 

and edge set of a graph G respectively. p and q denote the 

number of vertices and edges of G respectively. 

A graph G of size q is odd-graceful, if there is an injection   

from V(G) to {0, 1, 2, …, 2q-1} such that, when each edge xy 

is assigned the label or weight | (x) -  (y)|, the resulting 

edge labels are {1, 3, 5, …, 2q-1}. This definition was 

introduced in 1991 by Gnanajothi [1] who proved that the 

class of odd graceful graphs lies between the class of graphs 

with α-labelings and the class of bipartite graphs.  

Several surveys have been written, for instance, Gallian [2] 

has surveyed graph labeling, including over 1500 articles 

related to graph labelings. In 2012, Badr and Moussa [3] 

introduced odd graceful labelings of the kC4- snakes ( for the 

general case), kC8 and kC12- snakes ( for even case). They 

also proved that the linear kCn- snakes is odd graceful if and 

only if n and k are even. In 2012 Badr [4] show an odd 

graceful labeling of the linear 4 1kC snake mK e  and 

therefore we introduce the odd graceful labeling of 

4 1kC snake mK e ( for the general case ). He proved that 

the subdivision of linear 3kC snake is odd graceful. He also 

prove that the subdivision of linear 3kC snake with m-

pendant edges is odd graceful and he presented an odd 

graceful labeling of the crown graph 1nP mKe . In 2013 Badr 

[5] show that the revised friendship graphs F(kC4), F(kC8), 

F(kC12), F(kC16)  and F(kC20) are odd graceful where k is any 

positive integer. He introduced a new conjecture " The revised 

friendship graph F(kCn) is odd graceful where k is any 

positive integer and n = 0 (mod 4 ). Rosa [6] defined a 

triangular snake (or  -snake) as a connected graph in which 

all blocks are triangles and the block-cut-point graph is a path. 

Let k -snake be a  -snake with k blocks while kn -snake 

be a  -snake with k blocks and every block has n number of 

triangles with one common edge. Badr and Abdel-aal [7] 

proved that an odd graceful labeling of the all subdivision of 

double triangular snakes ( 2 k -snake). They proved that the 

all subdivision of 2 1m -snake are odd graceful. They also 

generalized the above two results (all subdivision of 2 km -

snake are odd graceful). In 2013 Badr and Abdel-aal [8 ] show 

that an odd graceful labeling of the all subdivision of double 

triangular snakes ( 2 k -snake ). They also proved that the all 

subdivision of 2 1m -snake are odd graceful and they 

generalized the above two results (the all subdivision of 2

km -snake are odd graceful). Barrientos [9] generalized the 

definition of triangular snakes by the following definition. 

Definition 1.2 

A connected graph in which the k blocks are isomorphic to the 

cycle Cn and the block-cutpoint graph is a path denoted by 

kCn-snake. 

Now, we generalize the definition of kCn-snake by the 

following definition. 

Definition 1.3 

The family of graphs consisting of k block of Cn with two 

non-adjacent vertices in common where every block has m 

copies of Cn and the block-cutpoint graph is a path  denoted 

by (m, k) Cn. 

Definition 1.4 

The (m, k) Cn snake is called linear, if the block-cut-vertex 

graph of (m, k) Cn snake has the property that the distance 

between any two consecutive cut-vertices is
2

n 
 

.  

Example 1.5 

                                        
(a) (b) 

Figure 1: a) The linear (2, 1) C4-snake and   b)  The linear 

(3,2) C4-snake 

In this paper, we show that the linear cyclic snakes (1, k) C4- 

snake and (2, k) C4- snake are odd graceful. We prove that the 

linear cyclic snakes (1, k) C6-snake and (2, k) C6- snake are 

odd graceful. We also prove that the linear cyclic snakes (1, k) 

C8- snake and (2, k) C8- snake are odd graceful. We generalize 
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the above results "the linear cyclic snakes (m, k) C4- snake, 

(m, k) C6-snake and (m, k) C8-snake are odd graceful ". 

Finally, we introduce a new conjecture" All the linear cyclic 

snakes (m, k) Cn-snakes are odd graceful if n is even)".   

2. MAIN RESULTS 
The following theorem was introduced by Badr and Moussa 

[3] but we can introduce this theorem using a new labeling. 

Theorem 2.1: The linear graph (1, k) C4-snake is odd                                   

              graceful. 

Proof: See our technical report [10]. 

Theorem 2.2: All the linear cyclic snakes (2, k) C4-snakes are

          odd graceful. 

Proof: 

Let G = (2, k) C4-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) and wij where 

i = 1, 2, …, k and j = 1, 2, 3, 4. 

We can construct the graph G = (2, k) C4-snakes as the 

following: 

1-We label the block-cutpoint graph by ui  where i = 1, 2,…,   

    k+1. 

2-We label the vertices which adjacent to ui and ui+1 by wij   

   where i = 1, 2, …, k and  j = 1, 2, 3, 4, as shown in Figure 2. 

u1

u2
u3

uk
uk+1u4

wk3

wk2

wk1

w34w24w14

w33w23w13

w32w22w12

w31
w21w11

wk4

. 

Figure 2: The graph (2, k) C4-snake. 

Clearly, the graph G = (2, k) C4-snakes has q = 8k edges and 

p = 5k + 1 vertices.  

We prove that all the linear cyclic snakes (2, k) C4-snakes are 

graceful. Let us consider the following numbering   of the 

vertices of the graph G: 

8 8 1 1i  (u ) = i  -  i k                                        

2 8 2 9 1 ,1 4ij  (w ) = q - i  - j  + i k j      

a) 
1 4

1 1 1

( ) max (8i-8), (2q - 8i -  2 9) 2 1max max
j

v V i k i k

Max v j q
 

     


   



, the maximum value of all odd integers. Thus   (v)  { 0, 1, 

2 …, 2q -1} 

 (b) Clearly   is a one – to – one mapping from the vertex set   

      of G to {0, 1, 2, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all 

the odd integers of the interval [1, 2q-1]. 

The range of 

1| | {2 16 15 : 1

2 1 2 17 ..., 2 16 15}

i i  (w ) - (u )  = q - i  +        i k  }

{  q , q - ,  q k

    

  
 

The range of 

1 1| | {2 16 7 : 1

2 9 2 25 ..., 2 16 7}

i i  (w ) -  (u )  = q - i  +      i k  }

{  q , q - ,  q k

     

  
 

The range of 

2| | {2 16 13 :1

2 3 2 19 ..., 2 16 13}

i i  (w ) - (u )  = q - i  +      i k  }

{  q , q - ,  q k

    

  
 

The range of 

2 1| | {2 16 5 :1

2 11 2 27 ..., 2 16 5}

i i  (w ) - (u )  = q - i  +     i k  }

{  q , q - ,  q k

     

  
 

The range of 

3| | {2 16 11 :1

2 5 2 21,..., 2 16 11}

i i  (w ) - (u )  = q - i  +     i k  }

{  q , q -  q k

    

  
 

The range of 

3 1| | {2 16 3 :1

2 13 2 29 ..., 2 16 3}

i i  (w ) - (u )  = q - i  +      i k  }

{  q , q - ,  q k

     

  
 

The range of 

 
4| | {2 16 9:1

2 7 2 23,..., 2 16 9}

i i  (w ) - (u )  = q - i  +   i k  }

{  q , q -  q k

    

  
 

The range of 

4 1| | {2 16 1 :1

2 15 2 31 ..., 2 16 1}

i i  (w ) - (u )  = q - i  +    i k  }

{  q , q - ,  q k

     

  
 

Hence {׀   (u) -  (v) ׀ : uv є E } = {1, 3, …, 2q-1}so that 

the linear (2, k) C4-snakes is odd graceful.                              ■ 

Example 2.3 

0
8 16 24

32

35

37

39

414957

435159

455361

475563

33
 

Figure 3: The odd graceful labeling of the linear (2, 4) C4-

snake. 

Now, we generalize the above Theorems by the following 

Theorem. 

Theorem 2.4: All the linear cyclic snakes (m, k) C4-snakes 

are odd graceful. 

Proof: 

Let G = (m, k) C4-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) and wij where 

i = 1, 2, …, k and j = 1, 2, …, 2m. 

We can construct the graph G = (m, k) C4-snakes as the 

following: 

1- We label the block-cutpoint graph by ui  where  i = 1, 2, 

…, k+1. 

2- We label the vertices which adjacent to ui and ui+1 by wij 

where i = 1, 2, …, k and  j = 1, 2, …, 2m, as shown in Figure 

4. 
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Clearly, the graph G = (2, k) C4-snakes has q = 2mk edges 

and p = mk+k+1 vertices.  

We prove that all the linear cyclic snakes (m, k) C4-snakes are 

odd graceful. Let us consider the following numbering   of 

the vertices of the graph G: 

4 ( 1) 1 1i  (u ) = m i  -  i k                                        

2 4 ( 1) 2 1 1 ,1 2ij  (w ) = q - m i  -  j  + i k j m     

 
(a)


1 2

1 1 1

( ) max 4m(i-1), (2q - 4 ( 1) 2 1)max max

2 1

j m

v V i k i k

Max v m i j

q


 

     


    



 

 

the maximum value of all odd integers. Thus   (v)  { 0, 1, 2 

… , 2q-1 } 

(b) Clearly   is a one – to – one mapping from the vertex set 

of G to {0, 1, 2, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all 

the odd integers of the interval [1, 2q-1]. 

The range of  

| |

2 8 ( 1) 2 1 ,1 ,1 2

ij i  (w ) - (u )  =

 { q - m i j    i k j m }

 

      
 

The range of  

1| |

2 4 (2 1) 2 1 ,1 ,1 2

ij i  (w ) -   (u )  = 

{ q - m i j     i k j m }

  

      
 

Hence {׀   (u) -   (v) ׀ : uv є E } = {1, 3,…, 2q-1}so that 

the all the linear cyclic snakes (m, k) C4-snakes are odd 

graceful.                                                                                   ■ 

The following theorem was introduced by Badr and Moussa 

[3] but we can introduce this theorem using a new labeling.  

Theorem 2.5: The linear graph (1, k) C6 is odd graceful. 

Proof: See our technical report [10]. 

u1

u2 u3

u4 uk uk+1

w11

w12

w1(2m -1)

w1,2m

w2(2m -1)

w2,2m w3,2m
wk,2m

w3(2m -1) wk(2m -1)

w21

w22

w31

w32

wk1

wk2

 

Figure 4: The graph (m, k) C4-snake. 

Theorem 2.6: All linear cyclic snakes (2, k) C6 are odd 

graceful. 

Proof: 

Let G = (2, k) C6-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) , wij where i 

= 1, 2, …, k and j = 1, 2 ,  xij where i = 1, 2, …, 2k and j = 1, 

2 and vij where i = 1, 2, …, k and j = 1, 2 

We can construct the graph G = (2, k) C6-snakes as the 

following: 

1- We label the block-cutpoint graph by ui  where  i = 1, 2, 

…, k+1. 

ii) 2- We label the vertices which adjacent to ui and ui+1 by wij           

iii)      where i = 1, 2, …, k  and  j = 1, 2. 

3- We label the vertices which adjacent to ui and wij by x(2i-1)j  

       where i = 1, 2, …, k  and  j = 1, 2. 

4- We label the vertices which adjacent to ui+1 and wij by x(2i)j   

       where i = 1, 2, …, k  and  j = 1, 2. 

5- We label the vertices which adjacent to ui and ui+1 by vij   

       where i = 1, 2, …, k and  j = 1, 2. as shown in Figure 5. 

Clearly, the graph G = (2, k) C6-snakes has q = 16k edges and 

p = 13k + 1 vertices.  

u1

u2 u3

u4
uk

uk+1

w11 w21 w31 wk1

v12

w12

v11 v21

v22

w22

v31

v32

w32

vk1

vk2

wk2
x11 x21 x31

x41

x51

x61 x(2k-1)1 x(2k) 1

x(2k )2x(2k-1)2 
x62x52x32

x22x12 x42

 

Figure 5: The linear (2, k) C6-snakes 
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We prove that all the linear cyclic snakes (2, k) C8-snakes are 

odd graceful. Let us consider the following numbering   of 

the vertices of the graph G: 

 (ui)  = 8( i - 1)                          , i = 1, 2, 3… k+1 

 (wij) = 8i – 4j + 2                     , i = 1, 2, 3… k     ,  j =1, 2 

 (xij) = 2q – 4i –2j + 5       , i = 1, 2, 3… 2k     for all   j 

=1, 2 

 (vij) = 8k – 8i+ 2j-1                     , i = 1, 2, 3… k     ,  j =1, 2 

a) 


1 2

1 1 1

1 2 1 2

1 2 1

( ) max 8(i-1), (8i -  4 2),max max

(2 4i - 2 5), (8( )  2 1)max max

j

v V i k i k

j j

i k i k

Max v j

q j k i j


 

     

   

   

 


     



       

 2q -1 , the maximum value of all odd integers. Thus   (v)  

{ 0, 1, 2 …, 2q-1 }. 

 (b) Clearly   is a one – to – one mapping from the vertex set 

of  G to {0, 1, 2, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all 

the odd integers of the interval [1, 2q-1]. 

The range of 

(2 ) 1| | 2 16 2 5 ,1 ,1 2i j i  (x ) -   (u )  = { q - i j    i k j  }        

The range of 

(2 )| | 2 16 2 3 ,1 ,1 2i j ij  (x ) -   (w )  = { q - i j    i k j  }       

The range of 

(2 1)| | 2 16 2 17 ,1 ,1 2i j i  (x ) -   (u )  = { q - i j   i k j  }       

The range of 

(2 1)| | 2 16 2 7 ,1 ,1 2i j ij  (x ) -   (w )  = { q - i j    i k j  }       

The range of 

| | | 8 16 2 7 | ,1 ,1 2ij i  (v ) -   (u )  = { k i j    i k j  }        

The range of 

1| | | 8 16 2 1| ,1 ,1 2ij i  (v ) -   (u )  = { k i j    i k j  }         

Hence {׀   (u) -   (v) ׀ : uv є E } = {1, 3,…, 2q-1}so that 

the linear (2, k) C6-snakes is odd graceful.                              ■ 

Theorem 2.7: All the linear cyclic snakes (m, k) C6-snakes 

are odd graceful.  

Proof:  

Let G = (m, k) C6-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) , wij where i 

= 1, 2, …, k and  j = 1, 2, …,m , xij where i = 1, 2, …, 2k and 

j = 1, 2, …,m and vij where i = 1, 2, …, k and  j = 1, 2, …,m 

We can construct the graph G = (m, k) C8-snakes as the 

following: 

1- We label the block-cutpoint graph by ui  where i = 1, 2,      

        …,   k+1. 

2- We label the vertices which adjacent to ui and ui+1 by wij   

     where i = 1, 2, …, k  and  j = 1, 2, …,m 

3- We label the vertices which adjacent to ui and wij by x(2i-1)j  

       where i = 1, 2, …, k  and  j = 1, 2, …,m. 

4- We label the vertices which adjacent to ui+1 and wij by x(2i)j  

       where i = 1, 2, …, k  and  j = 1, 2, …,m.  

5- We label the vertices which adjacent to ui and ui+1 by vij  

     where i = 1, 2, …, k  and  j = 1, 2, …,m. as shown in  

     Figure 6. 

u1

u2 u3

u4 uk+1uk

w12

w11

w22

w21

w32

w31

wk,2m

wk2

wk1

x1(2m-1)

x12

x11

x22

x21 x31

x42

x41

x52

x51

x62

x61

x2k-1,2m 

x2k-1 (2m-1) 

x2k-1 2 

x2k-1 1 

x2k,2m

x2k2

x2k 1

x32

w2(2m-1)
w1(2m-1)

x62m-1)

x5(2m-1)

x4(2m-1)

x3(2m-1)

x2(2m-1)

x1,2m

x2k (2m-1) 

wk (2m-1) w3 (2m-1) 

w3,2m

w2,2mw1,2m

x6,2m
x5,2mx4,2m

x3,2m

x2,2m

 

Figure 6: The graphs (m, k) C8-snake 

Clearly, the graph G = (m, k) C6-snakes has q = 8mk edges. 

and p = (6m+1)k + 1 vertices. We prove that all the linear 

cyclic snakes (m, k) C8-snakes are odd graceful. Let us 

consider the following numbering   of the vertices of the 

graph G : 

 (ui) = 4m (i – 1)                                , i = 1, 2, 3… k+1 

 (wij) = 8mi – 4j + -4m+2   , i = 1, 2, 3… k     ,  j =1, 2, …,m. 

 (xij) =2q –2m(i -1) - 2j + 1                , i = 1, 2,… 2k  for all    

j =1, 2, …,m. 

 (vij) = 4mk – 4mi + 2j-1     , i = 1, 2, 3… k     ,  j =1, 2, …,m. 

a) 
1

1 1 1

1 1

1 1

( ) max 4m(i-1), 8 4 4 2,max max

2 2m(i-1) -  2 1, 4 ( ) 2 1max max

j m

v V i k i k

j m j m

i k i k

Max v mi j m

q j m k i j


 

     

   

   

   


     



 

= 2q -1 , the maximum value of all odd integers. Thus   (v)  

{ 0, 1, 2 … 2q – 1 } 

 (b) Clearly   is a one –to– one mapping from the vertex set 

of G to {0, 1, 2, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all 

the odd integers of the   

     interval [1, 2q-1]. 
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The range of  

(2 ) 1| | 2 8 2 2 1 ,1 ,1i j i  (x ) -   (u )  = { q - mi m j    i k j m }         

The range of  

(2 )| | 2 12 6 2 1 ,1 ,1i j ij(x ) - (w )  = { q - mi m j    i k j m }        

The range of 

(2 1)| | 2 8 ( 1) 2 1 ,1 ,1i j i  (x ) -   (u )  = { q - m i j   i k j m}        

The range of 

(2 1)| | 2 12 8 2 1 ,1 ,1i j ij(x ) - (w )  = { q - mi m j    i k j m }        

The range of 

| | | 4 8 4 2 1| ,1 ,1ij i  (v ) -   (u )  = { mk mi m j    i k j m }         

The range of 

1| | | 4 8 2 1| ,1 ,1ij i  (v ) -   (u )  = { mk mi j    i k j m }         

Hence {׀   (u) -   (v) ׀ : uv є E } = {1, 3,…, 2q-1}so that 

the linear (m, k) C6-snakes is odd graceful.                             ■ 

The following theorem was introduced by Badr and 

Moussa [3] but we can introduce this theorem using a new 

labeling.  

Theorem 2.8: The linear (1, k) C8-snakes is odd graceful. 

Proof: See our technical report [10]. 

Theorem 2.9: All the linear cyclic snakes (2, k) C8-snakes are 

graceful.  

Proof: 

Let G = (2, k) C8-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) , wij where i 

= 1, 2, …, k and j = 1, 2, 3, 4 and xij where i = 1, 2, …, 2k and 

j = 1, 2, 3, 4. 

We can construct the graph G = (2, k) C8-snakes as the 

following: 

1- We label the block-cutpoint graph by ui  where  i = 1, 2, 

…, k+1. 

2- We label the vertices which adjacent to ui and ui+1 by wij  

      where i = 1, 2, …, k  and  j = 1, 2, 3, 4. 

3- We label the vertices which adjacent to ui and wij by x(2i-1)j 

where i = 1, 2, …, k  and  j = 1, 2, 3, 4. 

4- We label the vertices which adjacent to ui+1 and wij by x(2i)j 

where i = 1, 2, …, k  and  j = 1, 2, 3, 4, as shown in 

Figure 7. 

Clearly, the graph G = (2, k) C4-snakes has q = 16k edges and 

p = 13k + 1 vertices.  

We prove that all the double cyclic snakes (2, k) C8-snakes are 

odd graceful. Let us consider the following numbering   of 

the vertices of the graph G : 

 (ui)  = 16(i – 1)                  , i = 1, 2, 3… k+1 

 (wij) = 16i – 4j + 2             , i = 1, 2, 3… k     ,  j =1, 2, 3, 4 

 (xij) = 2q – 8i –2j + 9      , i = 1, 2, 3… 2k     for all 1 4j   

(a) 


1 4

1 1 1

1 4

1 2

( ) max 16(i-1), (16i -  4 2),max max

(2 8i - 2 9) 2 1max

j

v V i k i k

j

i k

Max v j

q j q


 

     

 

 

 


   



 

, the maximum value of all odd integers. Thus   (v)  { 0, 1, 

2 …, 2q-1 }. 

 (b) Clearly   is a one – to – one mapping from the vertex set  

      of G to {0, 1, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all   

    the odd integers of the  interval [1, 2q-1]. 

The range of 

(2 ) 1| | 2 32 2 9 ,1 ,1 4i j i  (x ) -   (u )  = { q - i j    i k j  }        

The range of 

(2 )| | 2 32 2 7 ,1 ,1 4i j ij  (x ) -   (w )  = { q - i j    i k j  }       

The range of 

(2 1)| | 2 32 2 33 ,1 ,1 4i j i  (x ) -   (u )  = { q - i j    i k j  }       

The range of 

(2 1)| | 2 32 2 15 ,1 ,1 4i j ij  (x ) -   (w )  = { q - i j    i k j  }       

Hence {׀   (u) -   (v) ׀ : uv є E } = {1, 3,…, 2q-1}so that 

the linear (2, k) C8-snakes is odd graceful.                                                                                                               

■ 

u1

u2 u3

u4
uk

uk+1

w11 w21 w31 wk1

w13

w12

w14 w24

w23

w22
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wk4

wk3

wk2
x11 x21 x31

x41

x51

x61 x(2k-1)1 x(2k) 1

x(2k )4

x(2k )3

x(2k )2

x(2(k-1)4 

x(2k-1)3 

x(2k-1)2 
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x62

x54

x53

x52

x34

x33

x32

x24

x23
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x44

x43

x42

 

Figure 7: The graph (2, k) C8-snakes 
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Theorem 2.10: All the linear cyclic snakes (m, k) C8-snakes 

are odd graceful.  

Proof:  

Let G = (m, k) C8-snakes has q edges and p vertices. The 

graph G consists of the vertices (u1, u2, …, uk+1) , wij where i 

= 1, 2, …, k and  j = 1, 2, …,2m and xij where i = 1, 2, …, 2k 

and j = 1, 2, …,2m. 

We can construct the graph G = (m, k) C8-snakes as the 

following: 

1- We label the block-cutpoint graph by ui  where  i = 1, 2, 

…, k+1. 

2- We label the vertices which adjacent to ui and ui+1 by wij  

       where i = 1, 2, …, k  and  j = 1, 2, …,2m. 

3- We label the vertices which adjacent to ui and wij by x(2i-1)j 

where i = 1, 2, …, k  and  j = 1, 2, …,2m. 

4- We label the vertices which adjacent to ui+1 and wij by x(2i)j 

where i = 1, 2, …, k  and  j = 1, 2, 3, 4, as shown in Figure8. 

Clearly, the graph G = (m, k) C4-snakes has q = 8mk edges. 

and p = (6m+1)k + 1 vertices. We prove that all the double 

cyclic snakes (m, k) C8-snakes are odd graceful. Let us 

consider the following numbering   of the vertices of the 

graph G: 

u1

u2 u3

u4 uk+1uk

w12

w11

w22

w21

w32

w31

wk,2m

wk2

wk1

x1(2m-1)

x12

x11

x22

x21 x31

x42

x41

x52

x51

x62

x61

x2k-1,2m 

x2k-1 (2m-1) 

x2k-1 2 

x2k-1 1 

x2k,2m

x2k2

x2k 1

x32

w2(2m-1)
w1(2m-1)

x62m-1)

x5(2m-1)

x4(2m-1)

x3(2m-1)

x2(2m-1)

x1,2m

x2k (2m-1) 

wk (2m-1) w3 (2m-1) 

w3,2m

w2,2mw1,2m

x6,2m
x5,2mx4,2m

x3,2m

x2,2m

Figure 8: The graphs (m, k) C8-snake 

 (ui) = 8m (i – 1)                 , i = 1, 2, 3… k+1 

 (wij) = 8mi – 4j + 2          , i = 1, 2, 3… k   ;   j = 1, 2, 3…2m 

 (xij) = 2q – 4m (i – 1) – 2j + 1        , i = 1, 2, 3… 2k          

;  j = 1, 2, 3…2m 

(a) 


1 2

1 1 1

1 2

1 2

( ) max 8m(i-1), 8 4 2,max max

(2 4m(i-1) -  2 1) 2 1max

j m

v V i k i k

j m

i k

Max v mi j

q j q


 

     

 

 

  


   



 

the maximum value of all odd integers. Thus   (v)  { 0, 1, 2 

… 2q – 1 } 

 (b) Clearly   is a one –to– one mapping from the vertex set 

of G to {0, 1, 2, …, 2q-1}. 

c) It remains to show that the labels of the edges of G are all 

the odd integers of the interval [1,  2q-1]. 

The range of 

 
(2 ) 1| |

2 16 4 2 1,1 ,1 2

i j i  (x ) - (u )  = 

{ q - mi m j  i k j m }

  

      
 

The range of 

 
(2 )| |

2 16 12 2 1 ,1 ,1 2

i j ij  (x ) -   (w )  = 

{ q - mi m j    i k j m }

 

      
 

The range of 

 
(2 1)| |

2 16 16 2 1 ,1 1,1 2

i j i(x ) -  (u )  = 

{ q - mi m j    i k j m }

 

       
 

The range of  

(2 1)| |

2 16 8 2 1 ,1 ,1 2

i j ij  (x ) -   (w )  = 

{ q - mi m j    i k j m }

 

      
 

Hence {׀  (u) -  (v) ׀ : uv є E } = {1, 3,…, 2q-1}so that the 

all the linear cyclic snakes (m, k) C8-snakes are odd graceful.■ 

Conjecture 2.10: All the linear cyclic snakes (m, k) Cn-snakes 

are odd graceful if n even.  

3. CONCLUSION 
In this paper, we show that the linear cyclic snakes (1, k) C4- 

snake and (2, k) C4- snake are odd graceful. We proved that 

the linear cyclic snakes (1, k) C6- snake  and (2, k) C6- snake 

are odd graceful. We also proved that the linear cyclic snakes 

(1, k) C8- snake and (2, k) C8- snake are odd graceful. We 

generalized the above results "the linear cyclic snakes (m, k). 
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